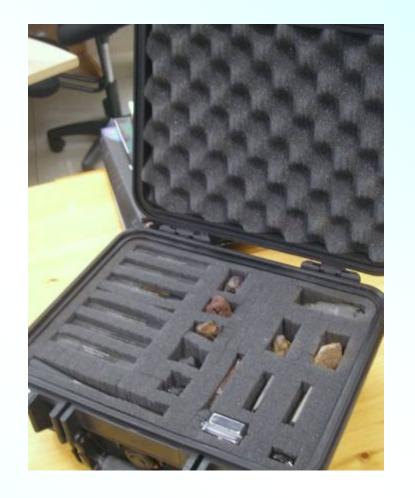



Mallette pédagogique "Météorites"

Livret d'introduction pour les élèves de primaire et collège

Introduction

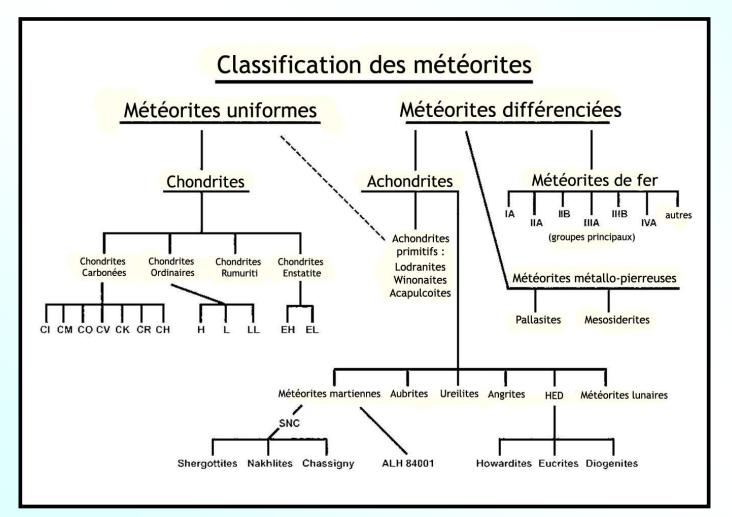


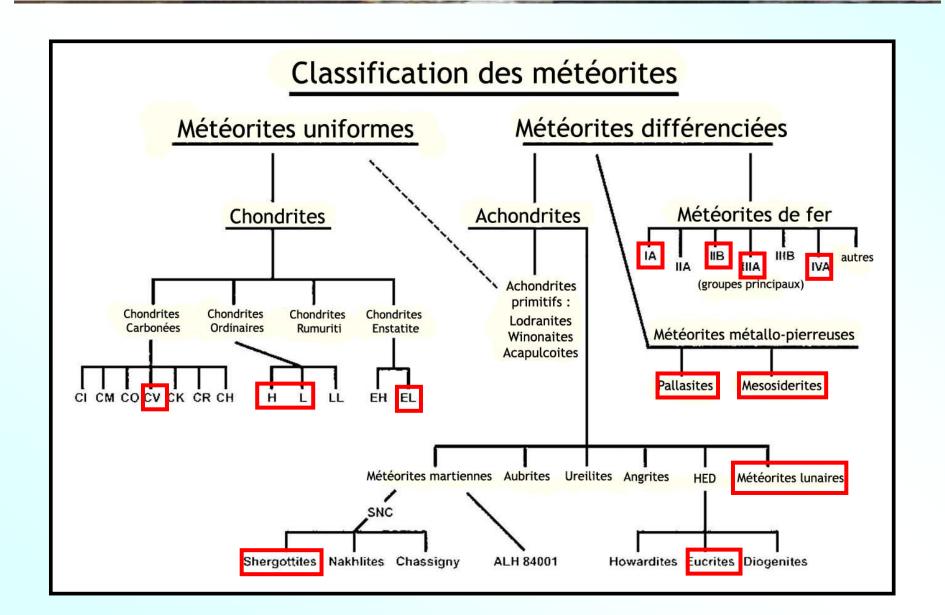
Introduction sur les météorites et les impacts météoritiques d'objets d'origine extraterrestre.

Réalisé par le *Southwest Meteorite Laboratory*

Visitez le site :

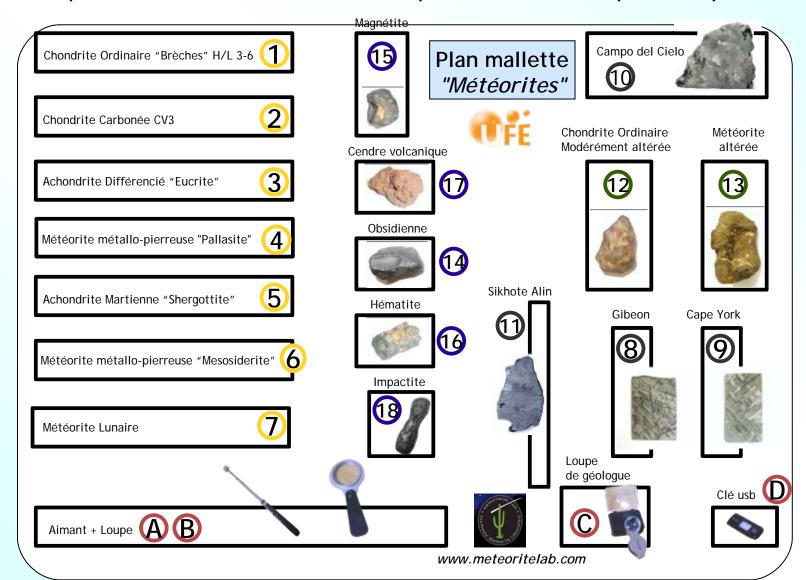
www.meteoritelab.com, vous y trouverez des informations et de quoi compléter la mallette (collection de météorites et impactites).


Deux catégories de météorites

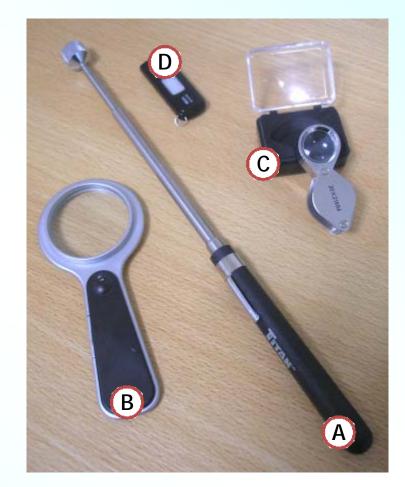

Les Chondrites: astéroïdes indifférenciés (non fondus),

Les Achondrites: astéroïdes différenciés (fondus).

Les météorites de cette mallette



Inventaire du contenu de la mallette


Plan de rangement de la mallette

Cliquez sur les numéros des éléments pour afficher la diapo correspondante

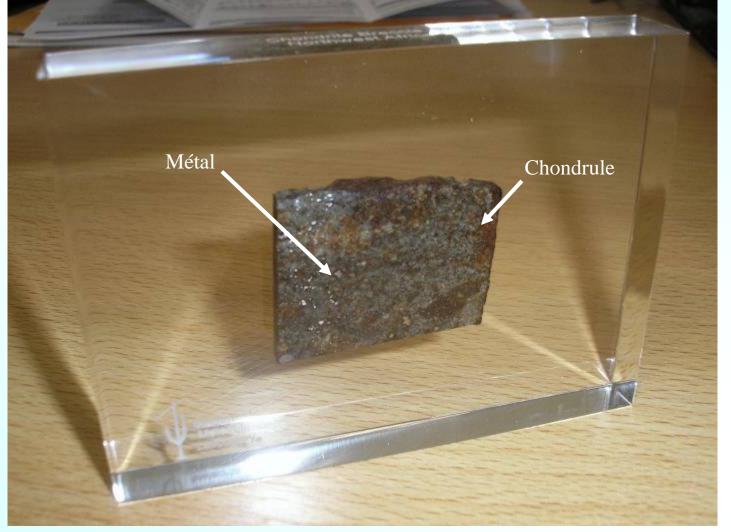
Outils pour l'étude des météorites

- A Mant: la plupart des météorites vont attirer les aimants car elles contiennent du métal et d'autres minéraux magnétiques
- B La loupe est utile pour étudier les caractéristiques de surface : la croûte de fusion, les fissures, les fractures et les fragments.
- La loupe de géologue est utilisée afin d'étudier plus finement les météorites avec un fort agrandissement et observer les structures fines comme les chondrules, les inclusions, et les grains de métal
- Clé USB : elle contient les fichiers de présentation de la mallette et d'introduction aux météorites.

Supports acryliques

Ils contiennent des sections polies de six types de météorites différents. (taille des acryliques : 3"x 4"x 5/8")

Utilisez votre loupe de géologue ou un microscope pour les examiner en détails.

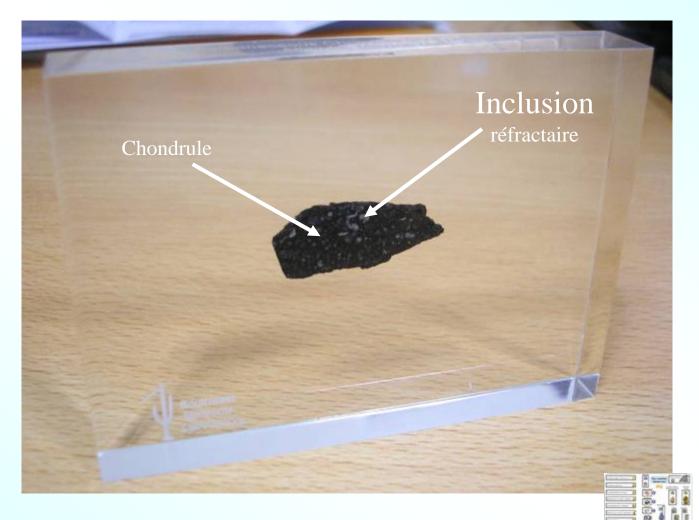


Les Chondrites Ordinaires

- Les chondrites sont les météorites les plus courantes.
- Elles représentent 92% de l'ensemble des chutes observées.
- Elles sont constituées d'un ensemble de grains métalliques (fer) mélangé à des chondrules (ou chondres : petites billes) de silicate accumulées les unes contre les autres formant une sorte de matrice.
- Certains chondrites ordinaires ont été chauffés sur leur astéroïde père, détruisant les chondrules et changeant la matrice.
- Les chondrites ordinaires n'ont pas été soumises à des températures suffisantes pour produire du magma ou de la lave.

Chondrite Ordinaire "Brèches"

(Nom = NWA 1398, Catégorie = H/L 3-6)


Pour revenir au plan, cliquez ici :

Chondrite Carbonée

(Nom = Allende, Catégorie = CV3)

- Les chondrites carbonées sont les plus anciennes roches du Système Solaire (chondrites primitives).
- Leur étude nous donne de précieux renseignements sur les premières étapes de l'histoire du Système Solaire.
- Ces météorites sont un agrégat de chondrules, d'inclusions réfractaire, englobées dans une matrice et de grains fins.

Achondrite Differencié

(Nom = NWA XXXX, Catégorie = Eucrite)

- Les Achondrites sont des roches magmatiques, elles proviennent d'astéroïdes soumisent à des températures suffisantes pour produire du magma et de la lave.
- Les Eucrites se sont formées à partir de lave volcanique provenant de la surface d'un grand astéroïde, probablement Vesta.
- Les échantillons prouvent que les astéroïdes ont subit des processus géologiques, similaires à ceux que l'on observe sur Terre de nos jours.



Météorite métallo-pierreuse - les

Pallasites

- Les Pallasites sont aussi un mélange de deux morceaux d'astéroïde.
- Le métal provient du noyau de fer, comme pour certaines météorites de fer.
- La matière rocheuse provient du manteau de l'astéroïde et ne ressemble à aucune autre météorite rocheuse.
- Les Pallasites représentent la limite noyau-manteau d'un astéroïde différencié coupé lors d'un impact cataclysmique au début de la formation du Système Solaire.
- La matière rocheuse est une pierre précieuse, l'olivine, aussi connu sous le nom de peridot.
- Elles sont souvent désignées comme les "Pierres précieuses de l'Univers" par les collectionneurs de météorites.

Météorite métallo-pierreuse (Nom = Fukang, Catégorie = Pallasite)

Achondrite Martienne

(Nom = DAG 735, Catégorie = Shergottite)

- Les données collectées lors des missions de la NASA sur Mars confirment que cette catégorie de météorites est bien originaire de la surface de la "Planète Rouge"
- La plupart des Shergottites se sont formées dans des volcans sur Mars.
- Les météorites
 Martiennes sont les
 uniques échantillons
 de Mars sur Terre, ce
 qui leur donne une
 grande valeur pour la
 recherche
 scientifique.

Météorite métallo-pierreuse (Nom = NWA XXXX, Catégorie = Mesosiderite)

- Les Mesosiderites sont un mélange de deux morceaux d'astéroïde.
- Le métal provient du noyau de fer, comme pour certaines météorites de fer.
- La matière rocheuse provient de la croûte, comme pour les Eucrites.
- Comment ces deux matériaux se sontils mélangés ? Cela reste un mystère que les scientifiques étudient!

Météorite Lunaire

(Nom = Dhofar 461, Catégorie = Lunar A)

- Les météorites lunaires sont des morceaux provenant de la croûte lunaire don't ils ont été éjectés lors d'un impact.
- Une partie de ces éjectats peut échapper à l'influence gravitationnelle de la Lune et venir s'écraser sur la Terre.
- La composition chimique de ces météorites est semblable à celle des échantillons collectés lors des missions Apollo, on en déduit qu'elles proviennent de la Lune.
- Il n'existerait que 31 météorites d'origine lunaire, trouvées sur Terre (dont une dizaine provient sans doute d'un même morceau initial). Elles sont donc fort rares (et chères)!

Météorites de fer

- La plupart des météroites de fer sont appelées octaèdrites car leur structure cristalline est de la forme d'un octaèdre.
- Les météorites se forment au plus profond du noyau des astéroides où le fer s'est concentré.
- La vitesse à laquelle elles refroidissent détermine la taille de leur cristaux.
- Nous allons comparer les octaèdrites :
 - Fin (refroidissement rapide)
 - Moyen
 - Epais
 - Très épais (refroidissement lent).

Octaèdrite fin (Nom = Gibeon)

- Le Gibeon est un premier exemple de météorite avec un motif Widmanstätten (structure octaèdre décrite en premier par Count Alois von Beckh Widmanstätten).
- Les octaèdrites fins contiennent en moyenne 9±1% de nickel et ont une bande kamacite large de 0.15 à 0.49 mm.

Octaèdrite moyen (Nom = Cape York)

- Le Cape York est un exemple typique d'octaèdrite moyen.
- Les octaèdrites moyens contiennent en moyenne 8±0.5% de nickel et ont une bande de kamacite (combinaison ferrugineuse) large de 0.5 à 1.33 mm.

Octaèdrite épais (Nom = Campo del Cielo)

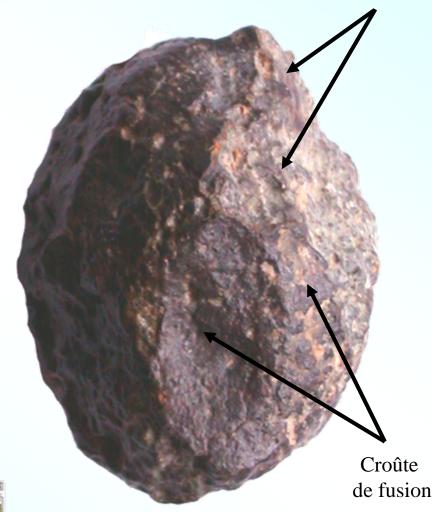
Le Campo del Cielo est un exemple typique d'octaèdrite épais.

Les octaèdrites épais contiennent en moyenne 7±0.5% avec une bande de kamacite large de 1.35 à 3 mm.

Octaèdrite très épais

(Nom = Sikhote Alin)

- Le Sikhote-Alin est un bon exemple d'octaèdrite très épais.
- Les octaèdrites très épais contiennent un pourcentage de 6±0.7% de nickel et ont une bande de kamacite de 3.3 à 10 mm de large.

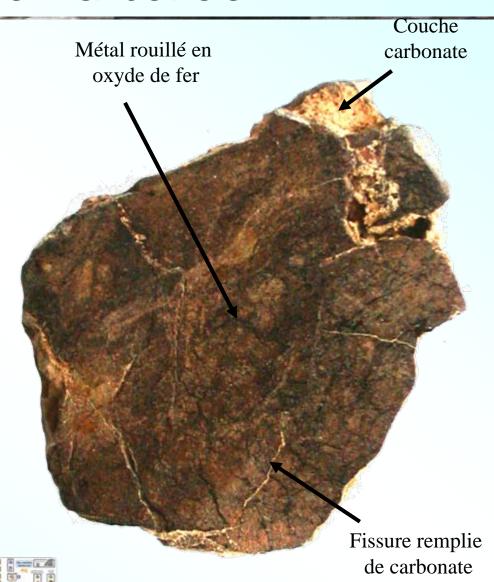


Pour revenir au plan, cliquez ici :

Chondrite Ordinaire altérée

(Catégorie H/L)

- Cet échantillon est on bon exemple de chondrite ordinaire modérément altérée.
- La surface extérieure est composée d'une croûte de fusion et du métal y est visible.
- Il est modérément attiré par un aimant.
- Sa densité est entre celle des oxydes de fer (hématite et magnétite) et de la céramique volcanique (obsidian).



Métal

Météorite "altérée"

- Les météorites sont modifiées quand elles restent à la surface de la Terre pendant longtemps.
- Elles perdent leur manteau : croûte de fusion par l'érosion.
- Leurs grains de métal se transforment en oxydes de fer.
- Des carbonates et des sels se développent à leur surface et remplissent les fissures.
- Si une météorite reste longtemps sans protection à la surface de la Terre, elle fini par se transformer en poussière et est perdue.

Fausse météorite (Obsidienne)

- De nombreux roches terrestres sont prises pour des météorites.
- L'Obsidienne est une roche volcanique vitreuse d'origine terrestre, riche en silice.
- Le morceau d'Obsidienne de la malette a l'aspect et le toucher de certaines météorites.
- Son aspect lissé, sculpté est souvent pris par erreur pour de la croûte de fusio. Une observation plus poussée revèle une surface polie par l'érosion.

Fausse météorite (Magnétite)

- La Magnétite est un oxyde de fer terrestre.
- C'est une roche noire dense qu'on trouve souvent dans des endroits dont les caractéristiques géologiques environnante sont très différentes.
- Du fait de sa densité, de son brillant, et de son hypersensibilité magnétique elle est souvent prise pour une matière météorite.

Fausse météorite (Hématite)

- L'Hématite est un autre oxyde de fer terrestre.
- L'Hématite contennat des morceaux de quartz ou de feldspath est souvent prise pour une météorite lunaire.
- Elle n'est pas magnétique et ressemble à beaucoup d'échantillons de météorites lunaires présentés dans les livres et les sites web.

Fausse météorite (Cendre volcanique)

- Des cendres volcaniques se forment durant les éruptions volcaniques explosives sur Terre.
- Elles sont souvent prises pour des météorites car beaucoup de gens pensent qu'elles ressemblent aux photographies d'astéroïdes prisent par les caméras des sondes spatiales de la NASA.

Fausse météorite (Impactite)

- Impactites sont les roches terrestres modifiées par compression, échauffement et agglomération des retombés de poussières et de fragments, elles sont dans les environ de l'impact de météorite.
- Ce sont des sous produits des météorites ... "leurs enfants"
- On retrouve souvent dans les impactites de très fines traces de la météorite qui a causé l'impact.

